154 research outputs found

    Size of nodal domains of the eigenvectors of a G(n,p) graph

    Full text link
    Consider an eigenvector of the adjacency matrix of a G(n, p) graph. A nodal domain is a connected component of the set of vertices where this eigenvector has a constant sign. It is known that with high probability, there are exactly two nodal domains for each eigenvector corresponding to a non-leading eigenvalue. We prove that with high probability, the sizes of these nodal domains are approximately equal to each other

    Weak Convergence of the Scaled Median of Independent Brownian Motions

    Full text link
    We consider the median of n independent Brownian motions, and show that this process, when properly scaled, converges weakly to a centered Gaussian process. The chief difficulty is establishing tightness, which is proved through direct estimates on the increments of the median process. An explicit formula is given for the covariance function of the limit process. The limit process is also shown to be Holder continuous with exponent gamma for all gamma < 1/4.Comment: to appear in Probability Theory and Related Field

    Cutoff for the Ising model on the lattice

    Full text link
    Introduced in 1963, Glauber dynamics is one of the most practiced and extensively studied methods for sampling the Ising model on lattices. It is well known that at high temperatures, the time it takes this chain to mix in L1L^1 on a system of size nn is O(logn)O(\log n). Whether in this regime there is cutoff, i.e. a sharp transition in the L1L^1-convergence to equilibrium, is a fundamental open problem: If so, as conjectured by Peres, it would imply that mixing occurs abruptly at (c+o(1))logn(c+o(1))\log n for some fixed c>0c>0, thus providing a rigorous stopping rule for this MCMC sampler. However, obtaining the precise asymptotics of the mixing and proving cutoff can be extremely challenging even for fairly simple Markov chains. Already for the one-dimensional Ising model, showing cutoff is a longstanding open problem. We settle the above by establishing cutoff and its location at the high temperature regime of the Ising model on the lattice with periodic boundary conditions. Our results hold for any dimension and at any temperature where there is strong spatial mixing: For Z2\Z^2 this carries all the way to the critical temperature. Specifically, for fixed d1d\geq 1, the continuous-time Glauber dynamics for the Ising model on (Z/nZ)d(\Z/n\Z)^d with periodic boundary conditions has cutoff at (d/2λ)logn(d/2\lambda_\infty)\log n, where λ\lambda_\infty is the spectral gap of the dynamics on the infinite-volume lattice. To our knowledge, this is the first time where cutoff is shown for a Markov chain where even understanding its stationary distribution is limited. The proof hinges on a new technique for translating L1L^1 to L2L^2 mixing which enables the application of log-Sobolev inequalities. The technique is general and carries to other monotone and anti-monotone spin-systems.Comment: 34 pages, 3 figure

    A Rigorous Path Integral for Supersymmetric Quantum Mechanics and the Heat Kernel

    Full text link
    In a rigorous construction of the path integral for supersymmetric quantum mechanics on a Riemann manifold, based on B\"ar and Pf\"affle's use of piecewise geodesic paths, the kernel of the time evolution operator is the heat kernel for the Laplacian on forms. The path integral is approximated by the integral of a form on the space of piecewise geodesic paths which is the pullback by a natural section of Mathai and Quillen's Thom form of a bundle over this space. In the case of closed paths, the bundle is the tangent space to the space of geodesic paths, and the integral of this form passes in the limit to the supertrace of the heat kernel.Comment: 14 pages, LaTeX, no fig

    On a stochastic partial differential equation with non-local diffusion

    Full text link
    In this paper, we prove existence, uniqueness and regularity for a class of stochastic partial differential equations with a fractional Laplacian driven by a space-time white noise in dimension one. The equation we consider may also include a reaction term

    Analysis of equilibrium states of Markov solutions to the 3D Navier-Stokes equations driven by additive noise

    Full text link
    We prove that every Markov solution to the three dimensional Navier-Stokes equation with periodic boundary conditions driven by additive Gaussian noise is uniquely ergodic. The convergence to the (unique) invariant measure is exponentially fast. Moreover, we give a well-posedness criterion for the equations in terms of invariant measures. We also analyse the energy balance and identify the term which ensures equality in the balance.Comment: 32 page

    Cut Points and Diffusions in Random Environment

    Full text link
    In this article we investigate the asymptotic behavior of a new class of multi-dimensional diffusions in random environment. We introduce cut times in the spirit of the work done by Bolthausen, Sznitman and Zeitouni, see [4], in the discrete setting providing a decoupling effect in the process. This allows us to take advantage of an ergodic structure to derive a strong law of large numbers with possibly vanishing limiting velocity and a central limit theorem under the quenched measure.Comment: 44 pages; accepted for publication in "Journal of Theoretical Probability

    Self-intersection local time of planar Brownian motion based on a strong approximation by random walks

    Full text link
    The main purpose of this work is to define planar self-intersection local time by an alternative approach which is based on an almost sure pathwise approximation of planar Brownian motion by simple, symmetric random walks. As a result, Brownian self-intersection local time is obtained as an almost sure limit of local averages of simple random walk self-intersection local times. An important tool is a discrete version of the Tanaka--Rosen--Yor formula; the continuous version of the formula is obtained as an almost sure limit of the discrete version. The author hopes that this approach to self-intersection local time is more transparent and elementary than other existing ones.Comment: 36 pages. A new part on renormalized self-intersection local time has been added and several inaccuracies have been corrected. To appear in Journal of Theoretical Probabilit

    Convergence of the stochastic Euler scheme for locally Lipschitz coefficients

    Full text link
    Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. The important case of superlinearly growing coefficients, however, has remained an open question. The main difficulty is that numerically weak convergence fails to hold in many cases of superlinearly growing coefficients. In this paper we overcome this difficulty and establish convergence of the Monte Carlo Euler method for a large class of one-dimensional stochastic differential equations whose drift functions have at most polynomial growth.Comment: Published at http://www.springerlink.com/content/g076w80730811vv3 in the Foundations of Computational Mathematics 201

    Random fields on model sets with localized dependency and their diffraction

    Full text link
    For a random field on a general discrete set, we introduce a condition that the range of the correlation from each site is within a predefined compact set D. For such a random field omega defined on the model set Lambda that satisfies a natural geometric condition, we develop a method to calculate the diffraction measure of the random field. The method partitions the random field into a finite number of random fields, each being independent and admitting the law of large numbers. The diffraction measure of omega consists almost surely of a pure-point component and an absolutely continuous component. The former is the diffraction measure of the expectation E[omega], while the inverse Fourier transform of the absolutely continuous component of omega turns out to be a weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point component will be understood quantitatively in a simple exact formula if the weights are continuous over the internal space of Lambda Then we provide a sufficient condition that the diffraction measure of a random field on a model set is still pure-point.Comment: 21 page
    corecore